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ABSTRACT

The properties of uniform Cantor sets are proved datermined that Cantor ternary sets Cantoﬁr set, Cantor -3 set,

Cantor —i set, Cantor —; set, Cantor —14—5 set, Cantor —; set are uniform Cantor sets by using the definitdd uniform

Cantor set. Also, determined box dimension and Hadisdimension of uniform Cantor set as well asitoa like sets.
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1. INTRODUCTION

Definition 1.1: Let F be any nonempty bounded subseR®dfand let Ns(F) be the smallest number of sets of diameter at
most § which can cover F. The lower and upper box dinwmsiof F are defined respectively démg(F) =

. log Ns(F) ST T log Ns(F)
llmg_,o Tgé‘ anddlmB (F) = llmg_,o Tgé"

Definition 1.2: Let m > 2 be an integer and 01<$ .Letl =[0, 1]. We construct a Cantor like bg the following

procedure. The set is then called as uniform Cassabr

At first stage, from | we remove (m-1) intervalsckaof Iength% , leaving behind m equally spaced

subintervalg ; (1<i< m) of lengthsi|/| =2 i.e.|[l|=1 ,1<i<m.

The left end of; ; coincides with left end of | and right end Igf,, coincides with right end of I. Le; be union

of subintervald; ; (1<i< m).

At second stage, we remove from edch(1< i < m), (m-1) intervals each of Ien% , leaving behind in

all m? equally spaced subintervdls, , I , -.... L (1<i<m?) of equal lengthd|l,,| i.e.|L;|= 2, 1<i<m? . The
extreme ends of subintervals coincide with theeamtr ends of basic subintervals remaining at fiegjes LetS, be union
of subintervalg, ; , I, , ..... L (I<i<m?).

2204 _
At third stage, we remove from eath (1< i < m?), (m-1) intervals each of Ieng% , leaving behind

in all m® equally spaced subintervdlg, , I, , -.... Is; (1<i<m?®) of equal lengthd|L,,| i.e.|l5;]= 2%, 1< i <m?.
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32 K. J. Shinde & S. M. Padhye

The extreme ends of subintervals coincide withetkiteme ends of basic subintervals remaining airskbstage. Lef; be

union of subintervalg; , 55 , ..... I (I<i<md).

Continuing in this way ak®" stage from each remaining interval, we remove Inmnfervals each of length

Ak=Lmk=1(1_2m)

ey TR leaving behind in alin® equally spaced subintervals; , I, , ..... Ii (1<i<mk)of equal lengths

Ale—ri| i-€. ]I i|= 2, 1< i < mF . The extreme ends of subintervals coincide Withéxtreme ends of basic subintervals

remaining at(k — 1)™* stage. LetS, be union of subintervals, , Iy , ... L (Ii<smk), ~§ = Uﬁkl L, We
define S =Ny, S, Puts =1‘;§—g"; , Since| 41,1 = A¥*1

[eari]” S AKFDIZ AR AS e @)
Buts =1‘;§;, $og A = —logm, logA® = —logm™, A =m™1

Putting in equation (i) we geli,1|” = A*m™*

ks

But|l, | = A*

|1k,i|5 = ks
Putting in equation (ii) we get,
llasd” =~ [a]”, 1< T < m
Theorem 1.3:Let {E;} be a sequence of measurable sets. We have

s IfE,CE CS... , thenu(Uy-; E,) = lim u(E,).

e IfE,2E, 2 ... , thenu(E;)<oo, u(Np=q Ey) = lim u(E,).
2. MEASURE OF UNIFORM CANTOR SET

Now, we determine the measure of uniform Cantoirset/o ways. In the first way, we use the lengthemaining closed

intervals at each stage,andin second way,we udenfth of removed open intervals at each stage.
Theorem 2.1:1f S is uniform Cantor set, then m(S) = 0.
Proof: At first stage, remaining m equally spaced subiatisrare each of length
~ The sum of the lengths of remaining closed intisraafirst stage m.(S;) = mi.
At second stage, remainimg? equally spaced subintervals are each of leAgjth
= The sum of the lengths of remaining closed intsraasecond stagem(S,) =m?22.
At third stage, remaining® equally spaced subintervals are each of lea§ith

= The sum of the lengths of remaining closed intsraathird stage m(S;) =m323.
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Continuing in this way, dt‘" stage remainingn® equally spaced subintervals are each of leafjth
= The sum of the length of remaining closed intenak'" stage =m(S,) =mka*.

Since S M S, and using Theorem 1.3 we get, m(S) 8f)= lim_,,, m(Sy)

= limye mAA (2 A< = mA < 1= miA* <1) = m(S)=0

~ Lebesgue measure of uniform Cantor set is zero.

1-Am

Alternative proof: At first stage, we remove m-1 open intervals eafdength —

-~ The sum of the lengths of the removed intervafgsttstage = (m—l)l;(;'_l—rln) =1—2Am.

At second stage, we remove m(m-1) open intervalb eﬁlength’% .

~ The sum of the lengths of the removed intervaleabnd stage = m(m-i{% =Am(1 — Am).

2,204 _
At third stage, we remova?(m-1) open intervals each of Iend%hm(l—m .

m2(m-1)

A2m?(1-Am)

=~ The sum of the lengths of the removed intervatbiad stage -m?(m-1) o ——

=22m?(1 — Am) and so on.
~ The sum of the lengths of the removed intervathégeometric construction of uniform Cantor set S
=(1—Am) + Aim(1 — Am)+ 12m2(1 — Am) + ......

=(1-Am)[1+Im+22m? + ...... 1=(1 — Am)

Therefore, m(S) = m(l) — m( All removed open intds/)
=1-1=0 (since m(l)=0)
Therefore m(S) =0

Hence, Lebesgue measure of uniform Cantor setds ze

Theorem 2.2:Cantor ternary set, Cantorz—set, Cantor —j set, Cantor —1 set, Cantor —; set, Cantor % set, Cantor—;

set are Uniform Cantor Set.

Proof: We show that Cantor ternary set, Cantérset, Cantor % set, Cantor -1 set, Cantor § set Cantor -i set are

uniform Cantor sets. We verify thHf,;|” = % Il

i) For Cantor ternary set

_ _1 _log2 — Nk
Here,m=24=-ands Toe3 Here|l,;| = )
1
TRENEfOrEli|” = (5 rvoe oo 1)
NOW,[Fis1i]” = )% = ()R (3% v (2)
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log 2
But s =—¢

. o S — S —
og3 " ~ slog3 = log2, log3°=log2, 3°=2

. . . N 11 . S 1 S
Putting in equation (2) we dét, | =-o e 1 :;|Ik‘i|
-~ Cantor ternary set is uniform Cantor set.

i) For Cantor —z set

= :E —_.—logz A= E k
Here,m=23=-ands 1083’ Here|l | ©

S
[Ii|” = (2 (3)
NOW,[Fis14]” = )% = (B)K5 (205 e ()
1 _
Buts :_1‘;;2%), - slog(®) = —log2, log(®)° = log2™%, ()° =2
5

Putting in equation (4) we get,

|licvril” :%(é)ks e[l :$|Ik,i|s

~ Cantor —g set is uniform Cantor set.

iii) For Cantor -j set

_ _3 _log2 | = E k
Here,m=21=-ands "0’ Here|l,.i| = )

NOW [Tir,] = ) = ()Yt (6)

__log2 . 3y - _ 3\s — -1 3ys =1
Buts-_logé), .-slog(7) log 2, log(7) log2™+, (7) >

Putting in equation (6) we get

|licsril” :%(%)ks e[l :$|Ik,i|s

« Cantor —;set is uniform Cantor set.
iv) For Cantor —1 set

Here, m =21 :i and s :-;- Herdl, ;| = (i)k

S -
T | =4 e (7)
NOW.|Ik+1,i|S = AT o RS S e e (8)
Buts ==
2
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1
Putting in equation (8) we dét,, | =474 2= %4"‘5 e hesrs]” :%|Ik‘i|s
« Cantor —jjset is uniform Cantor set.

v)For Cantor —; set

_log3

logs’

Here, m = 31 =§ and s Here|l,;| = (%)k

1 1 1
NOW [Fis1i|” = @ ®H D% = (D)D) it (10)

log3

Buts = o slog5 = log3,log5° = log3,5° =3

log

s_11 . I 5_11 s
| =3k €. lira,i] -;|k.i|

Putting in equation (10) we dét,,
« Cantor %set is uniform Cantor set.

vi) For Cantor % set

Here, m = 31 =~ and s =283
15 log(33)
—r4\k
Here,[I;| = ()
N 4
[i|” = () s (11)
4 4 4
NOW,[Fis1i]” = (G0 D% = (S0 ()% e (12)
-1 _ -
Buts =log‘;gj) , = slog(2) =-log3, log(2)° = log371, ()° =37
15

Putting in equation (12) we get

1 =1 ()l e |lesri] :lllk,ils
3 15 m

« Cantor —14—5 set is uniform Cantor set.
vii) For Cantor-; set
Here, m = 42 =X and s =%8*
7 log7
Herell.;| = (&)*
k,i 7

NOW,[lis1i]” = G) D% = )R ()% s (14)
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log4

Buts =——, . slog7 = log4, log7°=log4, 7°=4

log7
Putting in equation (14) we get

11

s
Z 7ks |

llisril = e[l :$|Ik,i

« Cantor —; set is uniform Cantor set.

3. BOX DIMENSION AND HAUSDORFF DIMENSION OF UNIFORM CANTOR SET

Proposition 3.1: Let s be a number strictly between 0 and 1 and R lmiform Cantor set defined in definition of
1.2.Therdimy(F) = s and 0 H°(F)<co.

Proposition 3.2:1f F is uniform Cantor set thetimy, (F) = dimy(F) = ﬁfg"; :
Proof: Let F be uniform Cantor set, <~ and s =52 = 1<~ | m<, logm<—logl
m —logA m A
%< 1 /1<i = log 4 is negative and-log A is positive)
LTS (B}

Now 0 <A, log0<logA,c0<log4, logA<O

~ —logA>0and m> 2= logm>0

. logm>

" _loga

B 2 P (2)
From equations (1) and (2) we get_@—lf<g"—;< lie.0O<s<1
By proposition 3.1 we get,
I (F) S S oo e e (3)

And, 0 <H* (F)<oo
Now, we show thatlim (F) = s. We first show thatimy(F) < s.

By definition 1.1 we get,

log N, (F)
—log 6k ’

ﬁB (F) = ﬁ<Sk—»o
We know that F is covered by* basic intervals of length® inE,, for each k.
= Ns, (F) <m* andé;, = A*

log mk

ﬁg (F) < ﬁk—)oo Tg;ik
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- logm
dimg(F) < —lig/l T S e s (4)

We getdimy (F) < dimy(F) < dimg(F)

From equations (3) and (4) we getslimz(F) < dimg(F) <s
~dimg(F)=s

~dimy(F) =dimg(F) =s

We consider now, several particular cases for giffevalues of m and to determined Hausdorff dimension and

box dimension of different Cantor like sets by gsRroposition 3.2.
Particular Case 3.3 When m =)Q,=§

By Proposition 3.2 we get,

logm _ log2 _ log2

dimy(F) =dimg(F) = —logd —log(®) " log3
3

which is Hausdorff dimension and box dimension ahtr ternary set.

Particular Case 3.4When m :)Q;E

By Proposition 3.2 we get,

logm _ log2 _ log2

dimy(F) =dimg(F) = Sogi = Tlog® e

which is Hausdorff dimension and box dimension ahtr % set

Particular Case 3.4 When m =)Q,=§

By Proposition 3.2 we get,

logm _ log2 _ log2

dimy(F) =dimg(F) = Tlogd Clog®) = log )

which is Hausdorff dimension and box dimension ahtr % set.

Particular Case 3.5 When m =)Q,=i

By Proposition 3.2 we get,

logm _ log2 _1

dimH (F) = dlmB (F) = _logl = _log(l) = 2
4

which is Hausdorff dimension and box dimension ahtr -% set.

Particular Case 3.6 When m =)B,=§

By Proposition 3.2 we get,
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logm _ log3 _ log3
—log 1 —log(%) log5s

dimy (F) = dimg (F) =

which is Hausdorff dimension and box dimension ahtr § set.

Particular Case 3.7 When m =)B,=14—5
By Proposition 3.2 we get,
dimH(F) — dimB(F) — logm _ log3 _ log3

-logad  -logi) log(Y)
which is Hausdorff dimension and box dimension ahtr -% set.

Particular Case 3.8When m =24,=%

By Proposition 3.2 we get,

logm _ log4 _ log4

dimy(F) =dimg(F) = ZlogA  —log@ log7
7

which is Hausdorff dimension and box dimension ahtr % set
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